#
A few examples of using Lets-Plot with dictionaries, Pandas DataFrames and Polars DataFrames.
import numpy as np
import pandas as pd
import polars as pl
from lets_plot import *
LetsPlot.setup_html()
1. Python Dictionaries#
x = np.linspace(-2 * np.pi, 2 * np.pi, 100)
y = np.sin(x)
ggplot({'x': x, 'y': y}, aes('x', 'y')) + geom_point()
2. Pandas Dataframe#
2.1. From Dictionary#
def get_data_dict():
np.random.seed(42)
n = 100
x = np.random.uniform(-1, 1, size=n)
y = 25 * x ** 2 + np.random.normal(size=n)
return {'x': x, 'y': y}
pandas_df = pd.DataFrame(get_data_dict())
print(pandas_df.shape)
pandas_df.head()
(100, 2)
| x | y | |
|---|---|---|
| 0 | -0.250920 | 1.661065 |
| 1 | 0.901429 | 20.015331 |
| 2 | 0.463988 | 5.473880 |
| 3 | 0.197317 | -1.014219 |
| 4 | -0.687963 | 11.612646 |
ggplot(pandas_df) + \
geom_point(aes('x', 'y', fill='y'), shape=21, size=5, color='white')
2.2. From CSV#
# Load mpg dataset with pandas
mpg_pandas_df = pd.read_csv("https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/mpg.csv")
ggplot(mpg_pandas_df, aes('displ', 'cty', fill='drv', size='hwy')) + \
geom_point(shape=21) + \
scale_size(range=[5, 15], breaks=[15, 40]) + \
ggsize(600, 350)
3. Polars Dataframe#
3.1. From Dictionary#
polars_df = pl.DataFrame(get_data_dict())
print(polars_df.shape)
polars_df.head()
(100, 2)
shape: (5, 2)
| x | y |
|---|---|
| f64 | f64 |
| -0.25092 | 1.661065 |
| 0.901429 | 20.015331 |
| 0.463988 | 5.47388 |
| 0.197317 | -1.014219 |
| -0.687963 | 11.612646 |
ggplot(polars_df) + \
geom_point(aes('x', 'y', fill='y'), shape=21, size=5, color='white')
3.2. From CSV#
# Load mpg dataset with polars
mpg_polars_df = pl.read_csv("https://raw.githubusercontent.com/JetBrains/lets-plot-docs/master/data/mpg.csv")
ggplot(mpg_polars_df, aes('displ', 'cty', fill='drv', size='hwy')) + \
geom_point(shape=21) + \
scale_size(range=[5, 15], breaks=[15, 40]) + \
ggsize(600, 350)